

Question 1 - Cauchy and Convergence

A sequence $(x_n) \in \mathbb{R}^{\mathbb{N}}$ is called *Cauchy* if and only if for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $n, m \geq N$ implies $|x_n - x_m| \leq \varepsilon$. Prove that $(x_n) \in \mathbb{R}^{\mathbb{N}}$ is Cauchy if and only if (x_n) converges to some point $a \in \mathbb{R}$.

Question 2 - Cluster Points

(Wade 2.4.7)

- a) Let E be a subset of \mathbb{R} . A point $a \in \mathbb{R}$ is called a *cluster* point of E if $E \cap (a-r,a+r)$ contains infinitely-many points for every r>0. Prove that a is a cluster point of E if and only if for each r>0, $E \cap (a-r,a+r) \setminus \{a\}$ is nonempty.
- b) Prove that every bounded infinite subset of \mathbb{R} has at least one cluster point.

Question 3 - Limits Infumum/Supremum

The *limit supremum* of a real sequence $(x_n) \in \mathbb{R}^{\mathbb{N}}$ is the extended real number $\limsup_{n \to \infty} x_n := \lim_{n \to \infty} (\sup_{k > n} x_k)$ and the

limit infimum of (x_n) is the extended real number $\liminf_{n\to\infty}:=\lim_{n\to\infty}(\inf_{k>n}x_k)$. Suppose that (x_n) is a real sequence.

Prove that

$$-\limsup_{x\to\infty}x_n=\liminf_{x\to\infty}(-x_n)$$

and

$$-\liminf_{x\to\infty}x_n=\liminf_{x\to\infty}(-x_n)$$