1. Field and Order Axioms

Let's start by discussing the axioms for real numbers, which are the axioms for a field. We'll also discuss the axioms for the order >.

Definition 1 (Law of Composition)

A law of composition on some set E is a map x: E x E — E. That is, if E is closed under x then * is a law of composition.

(Note: We often use E to represent a general set. This notation is relatively commonplace; it comes from the French language, where the
French term for set is ensemble.)

Definition 2 (Field)

A field (K, +,-) is a particular set K, equipped with two laws of composition (which we commonly denote as + and -), which meets
a series of properties, or axioms. The axioms are as follows:

(a) K must be closed under + and -. That is, for any k1, k2 € K, we need k1 + k2 € K and k; - ko2 € K.
(b) + and - must be commutative in K. That is, for any k1, ks € K, we need ki + ka2 = ko + k1 and ky - ko = ko - k1.

(c) + and - must be associative in K. That is, for any ki, k2, k3 € K, we need k1 + (k2 + k3) = (k1 + k2) + ks and k1 - (k2 - k3) =
(k1 - k) - ks.

(d) K must have distributivity of - over +. That is, for any k1, k2, ks € K, we need k1 - (k2 + k3) = k1 - k2 + k1 - ks.

(e) + and - must have identities in K. That is, we must have some elements i ,7s € K such that for all k € K, k+ i+ = k and
k -ie = k. We commonly denote 0 := iy and 1 := i,.

(f) + and - must have inverses in K. That is, for any k € K we must have some elements k,k € K such that k + %k = 0 and
k-k =1. We commonly denote —k :=k and k=% := k.

(Note: We commonly use K to represent a general field. This notation is also relatively commonplace; this time, it comes from the German
language, where the German term Kérper is used.)

A few common fields include R, the set of real numbers; C, the set of complex numbers; and, Z,, the subset of the integers {1, ..., p} for
some prime p, all under the typical definitions of addition and multiplication.

Definition 3 (Ring)

If you have some set R paired with two laws of composition + and -, where (R, +,-) would be a field iff inverses existed for - and -
was commutative, then we call R a ring.

Here is a theorem to give you some exposure to proofs involving fields.

Theorem 1 (Multiplication by Additive Identity)

Let (K, +,-) be a field with additive identity 0. For any k € K, we have 0 - k = 0.

Proof.Observe that we can write 0 = 0+ 0. Then 0-k = (0 + 0) - k. By commutativity, we get k- (0 + 0). Applying distributivity
yields 0 -k =k -0+ k- 0. Applying commutativity to the LHS yields k-0 =% -0+ k- 0. We can add the additive inverse of k - 0 to
yield 0 = k - 0 as required. O

Going forward, for convenience, we will often say “K is a field" with the two laws of composition implied.
Now we shall define the order > in R.

Definition 4 (The Order >)

We define the order > in R as the operator satisfying the following:

(a) > satisfies the trichotomy property. That is, for all a,b € R, either a > bor b > a or a =b.

(b) > is transitive. That is, for all a,b,c € R, if @ > b and b > ¢ then a > c.

(c) > is additive. That is, for all a,b,c € R, if a > bthena+c>b+c.

(d) > is multiplicative. That is, for all a,b,c € R, given that a > b, if ¢ > 0 then ac > be, and if 0 > ¢ then be > ac.

We define a < b to be equivalent to b > a.
(Note: We don't necessarily have the same orders for other fields. For instance, in C, is i greater than 1 or —i? In Zs, is 2 greater than 17)



