6. Change of Basis and Commutative Diagrams

This week, we will discuss change of basis. Let's break this down into three topics:

I. Writing a coordinate vector for a given basis.

Definition 1 (Coordinate Vector)

Suppose $v \in V$ and $B = \{b_1, ..., b_n\}$ is a basis for V. Then if $v = \alpha_1 b_1 + ... + \alpha_n b_n$, we say that the coordinate vector for v under the basis B is $[v]_B = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$

Example 1

II. Finding $[I]_{B \leftarrow A}$.

Definition 2 (Change of Basis Identity Matrix)

Let $A = \{a_1, ..., a_n\}$ and $B = \{b_1, ..., b_n\}$ be bases for some vector space V. We define the change of basis identity matrix $[I]_{B \leftarrow A}$ as the linear transformation which, for any vector v, $[I]_{B \leftarrow A}[v]_A = [v]_B$. It is computed as $[I]_{B \leftarrow A} = [[b_1]_A \cdots [b_n]_A]$

Example 2

$$Say \ A = \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix} \right\} \text{ and } B = \left\{ \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \right\}$$
which are both bases for $\mathbb{M}_{2 \times 2}$.

Write each the coordinate vector for each $b \in B$ under the basis A:

$$\begin{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} \end{bmatrix}_A = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \end{bmatrix}_A = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix} \end{bmatrix}_A = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \end{bmatrix}_A = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$

Placing these in as columns for our matrix $[I]_{B\leftarrow A}$ yields,

$[I]_{B\leftarrow A} =$	[1	0	1	-1]
	0	1	1	-1
	1	-1	1	1
	1	0	1	0

III. Finding $[T]_{B \leftarrow A}$.

Example 3

Let V and W be vector spaces. Say $T: V \to W$ where A is a basis of V and B is a basis of W. Let S_V and S_W be the standard bases for V and W. We can use a commutative diagram to find $[T]_{B \leftarrow A}$ in a few steps:

$$\begin{array}{c} A \xrightarrow{[T]_{B \leftarrow A}} B \\ [I]_{S_V \leftarrow A} \downarrow & \uparrow [I]_{B \leftarrow S_W} \\ S \xrightarrow{[T] = [T]_{S_W \leftarrow S_V}} S \end{array}$$

The idea of a commutative diagram is that if there are two paths between two nodes, the two paths are equivalent. In this context, this means that $[T]_{B\leftarrow A} = [I]_{B\leftarrow S_W}[T]_{S_W\leftarrow S_V}[I]_{S_V\leftarrow A}$. We would find $[I]_{B\leftarrow S_W}$ and $[I]_{S_V\leftarrow A}$ as we did in (II). We find $[T]_{S_W\leftarrow S_V}$ as we did a while back.