
10. Singular Values, SVD and PCA
We begin with the fundamental concept of singular values and their associated decomposition.

Definition 1 (Singular Values)

For an m × n matrix A, the singular values σ1 ≥ σ2 ≥ ... ≥ σmin(m,n) ≥ 0 are the square roots of the eigenvalues of A⊤A.

The singular values characterize important properties of linear transformations that eigenvalues alone cannot capture, especially for non-square
matrices.

Definition 2 (Singular Value Decomposition (SVD))

Every m × n matrix A can be factorized as A = UΣV ⊤ where U is an m × m orthogonal matrix whose columns are the left singular
vectors, V is an n × n orthogonal matrix whose columns are the right singular vectors, and Σ is an m × n rectangular diagonal matrix
with singular values on its diagonal.

We now connect this to principal component analysis (PCA). PCA is a method that uses the singular value decomposition to find a lower-
dimensional representation of data that captures its most significant variance.

Example 1

Consider A =

[3 2
2 3
2 −2

]
. We compute:

A⊤A =
[

3 2 2
2 3 −2

] [3 2
2 3
2 −2

]
=

[
17 4
4 17

]
The eigenvalues of A⊤A are λ1 = 21 and λ2 = 13 giving singular values σ1 =

√
21 and σ2 =

√
13.

The eigenvectors of A⊤A (which form the columns of V ) are v1 =
[ 1√

2
1√
2

]⊤
and v2 =

[ 1√
2

−1√
2

]⊤
.

The left singular vectors are:

u1 = 1
σ1

Av1 = 1√
42

[
5 5 0

]⊤ = 1√
2

[ 5√
50

5√
50 0

]T

u2 = 1
σ2

Av2 = 1√
26

[1, 1, 4]T

We need a third orthogonal left singular vector to complete U . Using the Gram-Schmidt process, we get u3 =
1√
2

[
− 1√

50 − 1√
50

1√
2

]T
.

Thus the SVD of A is:

A =

 5√
50

1√
26 − 1√

50
5√
50

1√
26 − 1√

50
0 4√

26
1√
2

 √
21 0
0

√
13

0 0

 [ 1√
2

1√
2

1√
2 − 1√

2

]
If we were to apply PCA to data represented by this matrix, we would project onto the first principal component v1 = 1√

2

[
1 1

]⊤
,

which captures the direction of maximum variance in the data.

Theorem 1 (Optimality of PCA)

The principal components obtained via SVD provide the optimal linear projection of the data in terms of minimizing reconstruction
error.

Theorem 2

The action of an m × n matrix A on the unit sphere in Rn can be decomposed into:

1. A rotation/reflection in Rn (via V ⊤).

2. A scaling along the coordinate axes by the singular values (via Σ).

3. A rotation/reflection in Rn (via U).

Several fundamental matrix properties are elegantly expressed via singular values.
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Theorem 3

Let A be an m × n matrix with singular values σ1 ≥ ... ≥ σr > 0 where r = rk(A). Then:

• rk(A) = r = number of non-zero singular values

• ||A||2 = σ1 (Euclidean/ℓ2 norm)

• ||A||F =
√

σ2
1 + ... + σ2

r (Frobenius norm)

• |det (A) | =
∏r

i=1 σi (if m = n)

• kerA = span{vr+1, ..., vn}
• imA = span{u1, ..., ur}

We shall end with a brief theorem on why PCA is optimal.

Theorem 4 (Eckart-Young-Mirsky Theorem)

The best rank-k approximation to A in the Frobenius norm is given by,

Ak = UkΣkV ⊤
k =

k∑
i=1

σiuiv
⊤
i

where Uk, Σk, and Vk contain only the first K columns/singular values.
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