10. Singular Values, SVD and PCA

We begin with the fundamental concept of singular values and their associated decomposition.

Definition 1 (Singular Values)

For an m x m matrix A, the singular values o1 > 02 > ... > Owin(m,n) = 0 are the square roots of the eigenvalues of AT A.

The singular values characterize important properties of linear transformations that eigenvalues alone cannot capture, especially for non-square
matrices.

Definition 2 (Singular Value Decomposition (SVD))

Every m X n matrix A can be factorized as A = USV " where U is an m x m orthogonal matrix whose columns are the left singular
vectors, V' is an n X n orthogonal matrix whose columns are the right singular vectors, and X is an m x n rectangular diagonal matrix
with singular values on its diagonal.

We now connect this to principal component analysis (PCA). PCA is a method that uses the singular value decomposition to find a lower-
dimensional representation of data that captures its most significant variance.
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The eigenvalues of AT A are A\; =21 and \» = 13 giving singular values 01 = /21 and o2 = v/13.

The eigenvectors of AT A (which form the columns of V) are v; = [% %]T and vy = [% %]T
The left singular vectors are:
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We need a third orthogonal left singular vector to complete U. Using the Gram-Schmidt process, we get us =
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If we were to apply PCA to data represented by this matrix, we would project onto the first principal component v; = % [1 1} ,
which captures the direction of maximum variance in the data.

Theorem 1 (Optimality of PCA)

The principal components obtained via SVD provide the optimal linear projection of the data in terms of minimizing reconstruction
error.

The action of an m X n matrix A on the unit sphere in R can be decomposed into:

1. A rotation/reflection in R™ (via V).

2. A scaling along the coordinate axes by the singular values (via ).

3. A rotation/reflection in R™ (via U).

Several fundamental matrix properties are elegantly expressed via singular values.



Let A be an m X n matrix with singular values o1 > ... > o, > 0 where r = rk(A). Then:
o rk(A) = r = number of non-zero singular values

[|Al|2 = o1 (Euclidean/¢2 norm)

||Al|F = \/02 + ... + o2 (Frobenius norm)

|det (A) | =T],_, oi (if m =n)

o kerA = span{v,y1,...,vn}

e imA = span{ui,...,ur}

We shall end with a brief theorem on why PCA is optimal.

Theorem 4 (Eckart-Young-Mirsky Theorem)

The best rank-k approximation to A in the Frobenius norm is given by,
k
Ak = UkEkaT = ZO'iUi’U;r
=1

where Uy, Xk, and Vi contain only the first K columns/singular values.




